

Available online at www.sciencedirect.com

Investigation of the catalytic performances of supported noble metal based catalysts in the $NO + H_2$ reaction under lean conditions

M. Engelmann-Pirez, P. Granger*, G. Leclercq

Université des Sciences et Technologies de Lille, Laboratoire de Catalyse de Lille, UMR CNRS No. 8010, Bâtiment C3, 59655 Villeneuve d'Ascq, France

Available online 6 September 2005

Abstract

This paper compares the catalytic performances of various supported palladium and platinum catalysts on a conventional γ -Al₂O₃, and LaCoO₃ perovskite that exhibits peculiar redox properties in the reduction of NO by hydrogen under lean conditions. A particular attention has been paid towards the catalytic behaviour of noble metals at low temperature, mainly below 120 °C. Clearly, their catalytic properties in the selective reduction of NO into N₂ strongly depend on the feed gas composition, and on the nature of the support. In that temperature range, Pt/Al₂O₃ exhibits the better activity, unfortunately undesirable N₂O is predominantly formed. The most prominent results have been obtained on Pd/LaCoO₃ because H₂O promotes the reduction of NO without affecting the selectivity behaviour, whereas a strong inhibiting effect on the rate of NO transformation into N₂ is observed on Pd/Al₂O₃. Such differences in the catalytic behaviour of palladium could be related to different interactions between Pd and LaCoO₃ generated during the activation thermal treatment under reductive atmosphere.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Noble metals; NO reduction; N2O selectivity; LaCoO3 perovskite

1. Introduction

Presently, the selective reduction of nitric oxides (NO_x) using ammonia as reducing agent is widespread through the world, this technology being the most powerful for reducing selectively NO into N₂ under lean conditions between 200 and 400 °C. On the other hand, at higher temperature, the competitive oxidation of NH₃ usually takes place. Furthermore, restrictive standard regulations on the emissions of atmospheric pollutants should concern an increasing number of industrial plants. Hence, the implementation of these new restrictions should generate significant improvements on the performances of the existing catalytic exhaust systems. The reduction of nitric oxide under lean conditions using ammonia as reducing agent on typical vanadia-titania based catalysts is less efficient for low temperature exhaust gases. In that particular case, the catalytic reduction with hydrogen seems to be a promising technology, although H₂ is usually

recognised as none selective. In addition, the formation of undesirable N_2O usually predominates. Recent investigations [1–4] show that supported noble metal based catalysts can profitably be used for reducing more selectively NO into N_2 in the presence of O_2 . It is found that the extent of interaction between the metal and the support governs the activity and the selectivity behaviour of noble metals. The most significant results have been obtained on Pt that usually exhibits poorer efficiency than Rh in the dissociation of NO [1].

This paper reports a study on the influence of oxygen and water on the catalytic performances of Pd and Pt supported on $LaCoO_3$ and alumina. This comparison shows that the use of palladium supported catalysts has to be considered, especially when $LaCoO_3$ is used as support.

2. Experimental

LaCoO₃ perovskites were prepared using a so-called solgel method involving a citrate route [5]. Aqueous solutions of La(NO₃)₃·6H₂O (Fluka) and Co(NO₃)₂·6H₂O (Fluka)

^{*} Corresponding author. Tel.: +33 3 20 43 49 38; fax: +33 3 20 43 65 61. E-mail address: pascal.granger@univ-lille1.fr (P. Granger).

were mixed with a solution of citric acid (Fluka) with a molar citric acid/(La + Co) ratio of 1. After evaporation the gel thus obtained was dried overnight. Finally, the resulting material was calcined in flowing air at 600 °C for 5 h for obtaining the rhombohedral structure of LaCoO₃. The supported noble metal based catalysts were prepared according to a conventional wet impregnation method using palladium nitrate and hexachloroplatinic acid solutions with adjusted concentrations in order to obtain 1 wt.% Pt or Pd. After impregnation on γ -alumina (100 m² g⁻¹) and LaCoO₃ (20 m² g⁻¹), the samples were calcined in air at 400 °C for 2 h, and then reduced at 250 or 500 °C in pure H₂.

The structural properties were studied by XRD on a D5000 diffractometer using Cu K α ($\lambda = 1.54056 \text{ Å}$) radiation. Temperature-programmed reduction (TPR) was carried out in a Micromeritics Autochem II 2920. Surface compositions were obtained by XPS analyses using a Leybold Heraeus spectrometer. Binding energy levels were referenced to the C 1s binding energy level at 285 eV. Catalytic performances were evaluated from temperature-programmed experiments performed in a fixed-bed flow reactor between 25 and 500 °C with a constant heating rate of 2 °C min⁻¹. Typically, the mass of catalyst was 0.7 g and the global flow rate was adjusted in order to obtain a space velocity of 4000 h⁻¹. The effluents were analysed by a Balzers mass spectrometer and a HP 5890 series II chromatograph fitted with a thermal conductivity detector. Before quantification, products and reactants were separated on a CTR1 column from Alltech.

3. Results and discussion

3.1. Physico-chemical properties of LaCoO₃ before and after subsequent addition of noble metals (Pt and Pd)

Fig. 1 illustrates structural changes of LaCoO $_3$ during H $_2$ exposure from room temperature to 800 °C. The X-ray

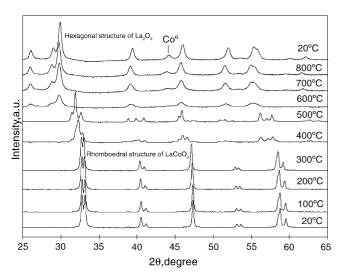


Fig. 1. XRD analysis of LaCoO₃ at various temperatures under pure H₂.

diffraction pattern recorded on LaCoO3 at 20 °C exhibits the characteristic X-ray lines of the typical rhombohedral structure usually stabilised at room temperature with the most intense diffraction lines located at $2\theta = 32.9^{\circ}$, 33.3° and 47.5° (see JCPDS data no. 48-0123). No significant contributions related to bulk Co₃O₄ and La₂O₃ phases are detectable. The specific area of 20 $\text{m}^2\text{ g}^{-1}$ is approximately one order of magnitude higher than those previously reported on solids obtained via a sol-gel method and calcined at a significant higher temperature of 800 °C [6]. As observed in Fig. 1, LaCoO₃ is unstable under reducing atmosphere at high temperature. Such typical modifications have been earlier explained in the literature [7,8]. Below 300 °C, the structural properties of LaCoO₃ are preserved. On the other hand, a significant shift in location of the main X-ray lines of LaCoO₃ occurs in the range 300–500 °C parallel to appearance of additional contributions at $2\theta = 31.5^{\circ}$ and 32.5° . Above 500 °C, extensive reduction of LaCoO₃, evidenced by the development of X-ray lines characteristic of La₂O₃ at $2\theta = 26.2^{\circ}$, 29.2° , 30° , 39.6° , 46.2°, 52.3°, 55.5° and bulk detectable metallic Co crystallites at $2\theta = 44.2^{\circ}$, takes place. According to the literature data [8,9], XRD observations suggest that LaCoO₃ does not reduce directly to Co and La₂O₃, but probably via the intermediate formation of oxygendeficient compounds. Also, the formation of La₂CoO₄ cannot strictly be ruled out. Such statements are supported by additional temperature-programmed reduction experiments (Fig. 2). The hydrogen consumption profile of LaCoO₃ in Fig. 2(a) exhibits two ranges between 200-500 and 500-730 °C with atomic H/Co ratio of, respectively, 0.98 ± 0.02 and 2.04 ± 0.02 which highlight a two-step reduction process involving the intermediate formation of Co²⁺. Both information could be explained by the formation of an oxygen-deficient perovskite that could act as intermediate in the overall reduction process, or alternately, by different reaction paths involving the intermediate

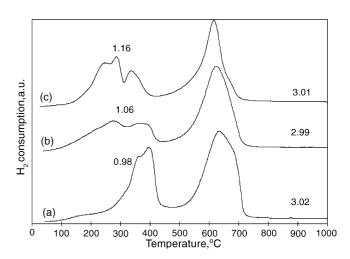


Fig. 2. Temperature-programmed reduction of LaCoO $_3$ (a), Pd/LaCoO $_3$ (b) and Pt/LaCoO $_3$ (c) in 5 vol.% H_2 diluted in He.

formation of La₂CoO₄ and CoO according to the following sequences:

First step:

$$2\text{LaCoO}_3 + \text{H}_2 \rightarrow \text{La}_2\text{CoO}_4 + \text{CoO} + \text{H}_2\text{O}$$
 (1) Second step:

$$La_2CoO_4 + CoO + H_2 \rightarrow La_2CoO_4 + Co + H_2O$$
 (2)

$$La_2CoO_4 + Co + H_2 \rightarrow La_2O_3 + 2Co + H_2O$$
 (3)

The examination of the total atomic H/Co ratio (H/Co \cong 3) highlights a complete reduction of $\mathrm{Co^{3+}}$ into $\mathrm{Co^{0}}$. Further addition of noble metals mainly promotes the reduction of $\mathrm{Co^{3+}}$ into $\mathrm{Co^{2+}}$, which starts at lower temperature on Pd/LaCoO₃ and Pt/LaCoO₃, below 200 °C. The values of the atomic H/Co ratio corresponding to the first reduction step slightly higher than 1 can be explained by the reduction of PtO₂ and PdO into metallic Pt and Pd. The high temperature reduction peak is also affected by the subsequent addition of noble metals with the second reduction step starting at lower temperature.

Previous workers [10] mentioned that LaCoO₃ can be reversibly reduced and oxidised in mild temperature conditions, typically below 500 °C where sintering reactions are inhibited. In fact, the irreversibility of the redox cycle is closely related to the sharp increase in the crystal size of cobalt particles [10]. In our typical activation conditions under H₂ before reaction, the reduction of LaCoO₃ leads predominantly to the formation of undetectable cobalt species. Accordingly, the segregation of well-dispersed Co species would be favourable for the observation of such reversible changes in the course of the reaction. Additional surface characterisations by XPS (see Table 1) after in situ successive reductive-oxidative exposures, respectively, under H₂ and O₂ at 450 °C, in the temperature conditions corresponding to the first reduction peak, evidence reversible processes with the observation of Co²⁺ characterised by a binding energy (BE) of 779.5 eV after reduction in H₂, and the restoration of Co^{3+} (with BE = 780.3 eV) after subsequent air exposure. Such reversible changes could deeply influence the catalytic properties of LaCoO₃, previous authors stating that the presence of both anionic vacancies and Co²⁺ species originates the catalytic performances of La_{0.9}Ce_{0.1}CoO_{3+δ} [11].

Table 1 XPS investigation of modifications in surface properties of LaCoO₃ during a redox cycle under hydrogen (10 vol.% H_2 in N_2) and oxygen (10 vol.% O_2 in N_2) at 450 °C

	Surface steechiometric composition	Binding energy (eV)		
		Co 2p	O 1s	La 3d
Before treatment	LaCo _{0.74} O _{3.16}	780.5	529.3	834
After H ₂ exposure	LaCo _{0.54} O _{2.46}	779.5	529.1	834
After O ₂ exposure	LaCo _{0.51} O _{2.99}	780.3	529.3	834

3.2. Catalytic $NO + H_2$ reaction on $M/LaCoO_3$ (with M = Pt or Pd) under lean conditions

3.2.1. Intrinsic properties of Pt, Pd and LaCoO₃

Preliminary temperature-programmed NO + H₂ reaction in a large excess of oxygen on pre-reduced Pd/Al₂O₃ and Pt/ Al₂O₃ in H₂ are reported, respectively, in Figs. 3 and 4. They reveal complex catalytic features due to the occurrence of various competitive and successive reactions leading to the formation of N2, N2O and H2O, NH3 being not detected under our experimental conditions, with a large excess of oxygen (3 vol.%). Nevertheless, it seems obvious that supported platinum and palladium catalysts behave similarly. Clearly, two conversion ranges can be distinguished that have been earlier observed on noble metal based catalysts supported over various materials [2,12,13]. A minimum is observed near 210 °C on Pd/Al₂O₃ (see Fig. 3). Below that temperature, a maximum arises at 105 °C corresponding to 92% NO conversion predominantly into N₂O, the selectivity for the production of N₂ being equal to 16.5% at the maximum NO conversion. Above 210 °C, the conversion of NO increases again, N2 being the main Ncontaining product. Such trends are also observed on Pt/ Al₂O₃ in Fig. 4, the conversion of NO by reaction with H₂ starting at lower temperature \sim 50 °C. These two ranges of conversion could reflect changes in reaction pathways as earlier suggested in the literature [12]. The direct reduction of NO by H₂ could be favoured at low temperature, whereas in situ generated NO2 could react with H2 at higher temperature. The formation of nitrates and nitrites species on noble metals or on the support could also occur, these species may further react with H₂. In fact, Machida et al. [14] suggested that subsequent improvements in the selectivity of noble metals could be closely related to the formation of

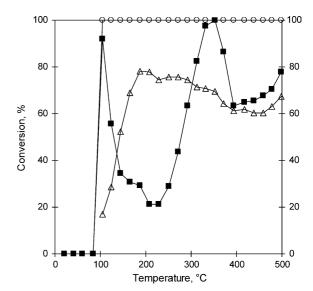


Fig. 3. Temperature-programmed NO + H_2 reaction on Pd/Al $_2$ O $_3$, prereduced in H_2 at 500 °C: NO conversion (\blacksquare), H_2 conversion (\bigcirc) and selectivity of N $_2$ (\triangle); experimental conditions: 0.15 vol.% NO, 0.5 vol.% H_2 and 3 vol.% O $_2$.

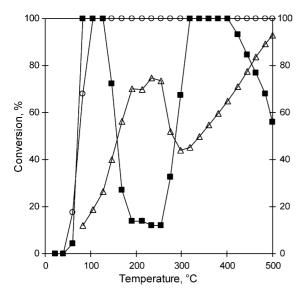


Fig. 4. Temperature-programmed NO + H_2 reaction on Pt/Al $_2$ O $_3$ prereduced in H_2 at 500 °C: NO conversion (\blacksquare), H_2 conversion (\bigcirc) and selectivity of N $_2$ (\triangle); experimental conditions: 0.15 vol.% NO, 0.5 vol.% H_2 and 3 vol.% O_2 .

chemisorbed nitrates on Pt and Pd surface and/or on alumina via spill-over process that could explain the high temperature conversion range and the better selectivity towards the production of N₂ than that observed at low temperature either on Pd/Al₂O₃ or on Pt/Al₂O₃. Alternately, the low and high temperature reduction ranges could reflect changes in the oxidation state of noble metals shifting from a reduced to an oxidised state with a rise in temperature. However, both explanations can be reconciled based on the arguments developed by Burch et al. [15,16]. Presumably, Pd catalysts are oxidised under reaction conditions mainly and high temperature and might only convert NO into NO₂.

Fig. 5 shows that $LaCoO_3$ is much less active than noble metals in the reduction of NO by H_2 , the extent of conversion depending on the reductive or oxidative pre-treatment. As observed a pre-reduction in H_2 at 500 °C drastically alters NO conversion, the competition being much more in favour of the oxidation of H_2 by O_2 . An extensive reduction of $LaCoO_3$ into La_2O_3 and undetectable Co species during the pre-activation treatment in H_2 at 500 °C for 12 h, earlier evidenced by XRD and thermogravimetric analysis [17], are probably related to such a deactivation.

3.2.2. Catalytic properties of supported noble metals on $LaCoO_3$ (with M = Pd or Pt)

3.2.2.1. Influence of the thermal pre-treatment of M/LaCoO₃. Temperature conversion and selectivity curves recorded on Pd/LaCoO₃ and Pt/LaCoO₃ are reported in Figs. 6 and 7, respectively. Particular attention has been paid to the thermal activation treatment on the overall NO conversion and the selectivity for the production of N₂. As illustrated in Fig. 6, the extent of reduction greatly influences

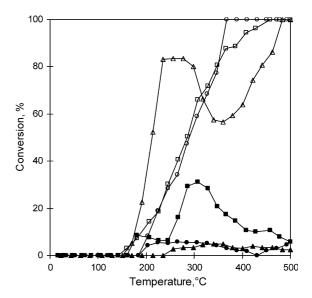


Fig. 5. Temperature-programmed NO + H_2 reaction on LaCoO₃ calcined at 500 °C: NO conversion (\blacksquare), H_2 conversion (\square); after reduction at 250 °C: NO conversion (\blacksquare), H_2 conversion (\bigcirc); after reduction at 500 °C: NO conversion (\triangle), H_2 conversion (\triangle); experimental conditions: 0.15 vol.% NO, 0.5 vol.% H_2 and 3 vol.% O_2 .

the catalytic performances of Pd/LaCoO₃. Clearly, prereduction in H₂ at 500 °C improves the low temperature NO conversion range and significantly enhances the selectivity towards the production of N₂ compared to Pd/Al₂O₃. On the other hand, the high temperature NO conversion range is attenuated. Now, regarding the influence of the pre-activation thermal treatment, the catalytic performances of Pd/LaCoO₃ are low after calcination in air and further reduction in H₂ at 250 °C with a strong attenuation of the low temperature NO conversion range. It is worthwhile to note that the conversion starts only at 200 °C on the calcined Pd/LaCoO₃ sample and remains below 20% NO conversion in the whole range of temperature. The beneficial effect of the reduction in H₂ is also noticeable of Pt/LaCoO3 but in that case the most prominent observation is the disappearance of the high conversion range. Both tendencies agree with the fact that metallic noble metal sites, particularly Pd, in interaction with LaCoO₃ benefits the low temperature conversion compared to a classical γ-alumina support, while oxidic Pt and Pd species favour the competitive oxidation of hydrogen by O₂. Such changes in the catalytic behaviour of noble metals could be explained by a bi-functional mechanism involving anionic vacancies from the support and metallic noble metal sites according to previous discussions [11]. Alternately, the nature of interactions with the support material could also change the adsorption properties of noble metals. By way of illustration, previous findings obtained during the reaction of NO by hydrogen on Pd/Al₂O₃-La₂O₃ show that the formation of Pd₃La alloy during the activation thermal treatment under reductive atmosphere between 400 and 700 °C enhances the catalytic activity [18].

The peculiar properties of pre-reduced supported Pd catalyst on LaCoO₃ activated in H_2 at 500 °C could be

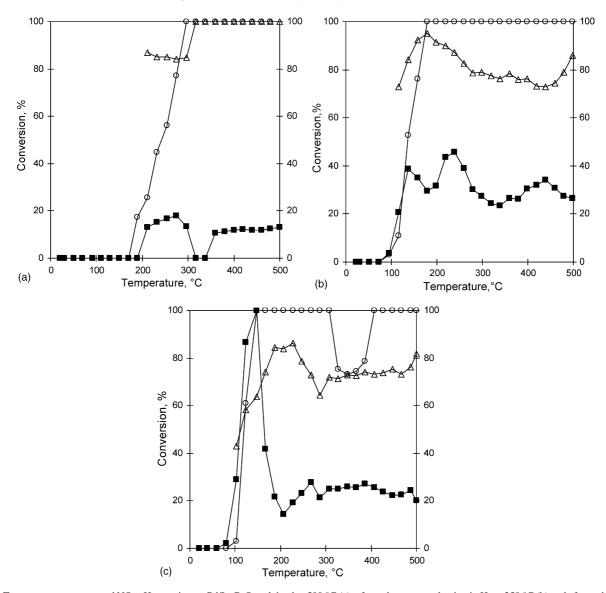


Fig. 6. Temperature-programmed NO + H_2 reaction on Pd/LaCoO₃ calcined at 500 °C (a), after subsequent reduction in H_2 at 250 °C (b) and after reduction at 500 °C (c): NO conversion (\blacksquare), H_2 conversion (\bigcirc) and selectivity of N_2 (\triangle); experimental conditions: 0.15 vol.% NO, 0.5 vol.% H_2 and 3 vol.% O_2 .

related to the nature of the interaction between Pd and La generated during the bulk reduction of LaCoO₃ into La₂O₃ and well-dispersed Co species. Alternately, the formation of bimetallic particles Pd–Co may also originate changes in the intrinsic adsorption properties of noble metals.

3.2.2.2. Influence of water on the catalytic performances. Figs. 8 and 9 illustrate the influence of water on the selectivity and on the overall conversion of NO. Obviously, water inhibits the conversion at high temperature whatever the catalyst composition. Such a tendency could easily be explained by the stabilisation of strongly chemisorbed nitrates either on alumina or LaCoO₃ in the presence of water, as previously reported in the literature [19,20]. On the other hand, no clear tendency arises from the examination of the effect of water on the catalytic performances of supported Pd and Pt catalyst at low temperature. As a matter of fact divergences are

observable according to the nature of the noble metal. Further comparisons of NO conversion curves recorded in the presence (Fig. 8(b)) or absence (Fig. 6(c)) of water show that H₂O promotes the activity in the conversion of NO by reaction with H₂ on Pd/LaCoO₃, while an inhibiting effect of water on the NO conversion prevails on Pd/Al₂O₃. Interestingly, reverse trends are observed on Pt, since NO conversion starts at lower temperature on Pt/Al₂O₃ in the presence of water, whereas no significant effect seems to occur on Pt/LaCoO₃. It is worthwhile to note that, at low temperature, H₂O has a detrimental effect on the selectivity behaviour of Pd/Al₂O₃, NO being quasi-completely converted into N₂O. On the other hand, the selectivity of Pd/LaCoO₃ is not significantly affected in the presence of water.

The usual beneficial effect of water on the conversion is usually supposed to be due to the dissociation of H₂O over noble metals that generates an increase in the coverage of

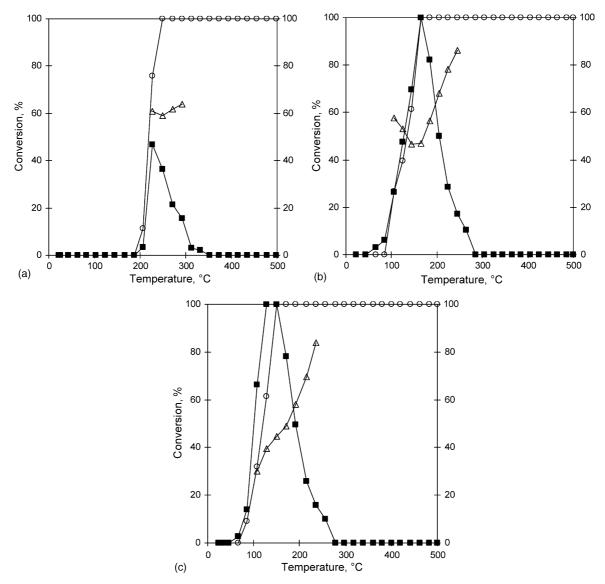


Fig. 7. Temperature-programmed NO + H_2 reaction on Pt/LaCoO₃ calcined at 500 °C (a), after a subsequent reduction in H_2 at 250 °C (b) and after reduction at 500 °C (c): NO conversion (\blacksquare), H_2 conversion (\bigcirc) and selectivity of N_2 (\triangle); experimental conditions: 0.15 vol.% NO, 0.5 vol.% H_2 and 3 vol.% O_2 .

chemisorbed hydrogen atoms. Such dissociation involves metallic sites. Frequently, the presence of strongly chemisorbed O atoms on the surface requires high temperature desorption either on Pd(100) [21] or Pt(1 1 1) [22]. Previous investigations have shown that the hydrogen coverage is a significant parameter for controlling the activity and the selectivity for the transformation of NO into N2. As a matter of fact, previous authors who investigated the kinetics of the NO+H2 reaction on Rh based catalysts suggested that chemisorbed H atoms could assist the dissociation of NO which is usually considered as rate determining step [23]. Consequently, the difference observed at low temperature between Pd and Pt, mainly on alumina could be explained by different oxygen coverage and/or by an extensive segregation of oxidic palladium species that could suppress the dissociation of H₂O on Pd/ Al₂O₃. On the other hand, the beneficial effect of water observed on Pd/LaCoO₃ could be related to the peculiar interaction with the support which preserves the metallic character of Pd more oxidisable than Pt.

At higher temperature, the stabilisation of more strongly chemisorbed nitrates and nitrites species in the presence of water [19] and/or a partial oxidation of noble metal could partially or completely suppress the high temperature activity in the conversion of NO [14], the oxidation of H_2 by O_2 occurring predominantly.

4. Conclusion

Generally speaking, hydrogen is usually recognised as none selective for reducing NO_x under lean conditions. Our results show a remarkable behaviour at low temperature between 50 and 200 °C, the reduction of NO by H_2 being

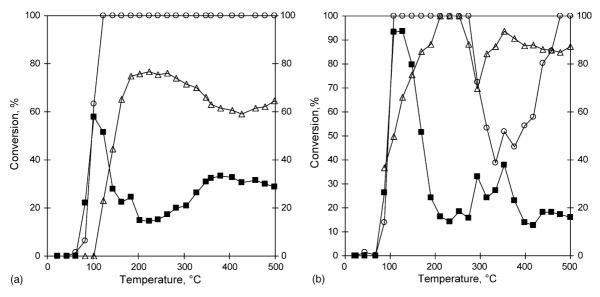


Fig. 8. Influence of water on the catalytic performances of Pd/Al_2O_3 (a) and $Pd/LaCoO_3$ (b) pre-reduced in H_2 at 500 °C: NO conversion (\blacksquare), H_2 conversion (\bigcirc) and selectivity of N_2 (\triangle); experimental conditions: 0.15 vol.% NO, 0.5 vol.% H_2 , 3 vol.% O_2 and 5 vol.% H_2O .

Fig. 9. Influence of water on the catalytic performances of Pt/Al_2O_3 (a) and $Pt/LaCoO_3$ (b) pre-reduced in H_2 at $500\,^{\circ}C$: NO conversion (), H_2 conversion () and selectivity of N_2 (); experimental conditions: 0.15 vol.% NO, 0.5 vol.% H_2 , 3 vol.% O_2 and 5 vol.% O_2 and 5 vol.% O_2 and 5 vol.% O_3 ().

much more favoured than the oxidation of H_2 by O_2 in this temperature range. In fact, it has been found that the catalytic reduction of NO by H_2 under lean conditions is strongly influenced by the nature of the support material and the pre-activation thermal treatment prior to reaction under oxidising or reducing atmosphere, especially when water is added to the reaction mixture. Two conversion ranges have been observed that could be explained by the occurrence of different reaction pathways. At low temperature, the direct $NO + H_2$ reaction would involve metallic Pt and Pd sites, whereas oxidic platinum and palladium species would mainly favour the competitive oxidation of H_2 by O_2 . At high temperature, the $NO_2 + H_2$ reaction and/or the involvement of nitrites and nitrates species could be

involved. Further stabilisation of such species in the presence of water would suppress the NO conversion. But the most significant result is obtained on the low conversion range particularly on LaCoO₃. The interaction between Pd and LaCoO₃ probably stabilises the metallic character of Pd that could be essential to observe a promotional effect of water on the conversion and the selectivity.

Acknowledgments

We greatly acknowledge the ADEME and the Region Nord-Pas-de-Calais through a grant (M. Engelmann-Pirez).

References

- A. Barrera, M. Viniegra, P. Bosch, V.H. Lara, S. Fuentes, Appl. Catal. B 34 (2001) 97.
- [2] T. Namba, C. Kohno, S. Masukawa, J. Uchisawa, N. Nakayama, A. Obuchi, Appl. Catal. B 46 (2003) 353.
- [3] C.N. Costa, P.G. Savva, C. Andronikou, P.S. Lambrou, K. Polychonopoulou, V.C. Belessi, V.N. Stathopoulos, P.J. Pomonis, A.M. Efstathiou, J. Catal. 209 (2002) 456.
- [4] J.-B. Yang, O.-Z. Fu, D.-Y. Wu, S.-D. Wang, Appl. Catal. B 49 (2004) 61.
- [5] M.S.G. Baythour, F.R. Sale, J. Mater. Sci. 17 (1982) 2757.
- [6] L. Simonot, F. Garin, G. Maire, Appl. Catal. 11 (1997) 167.
- [7] A. Lindstedt, D. Stromberg, M. Abul Milh, Appl. Catal. A 116 (1994) 109.
- [8] G. Tejuca, J.-L. Fierro, J.M.D. Tascon, Adv. Catal. 36 (1989) 237.
- [9] L.B. Sis, G.P. Wirtz, S.C. Sorenson, J. Appl. Phys. 44 (1973) 5553.
- [10] M.A. Pena, J.L. Fierro, Chem. Rev. 101 (2001) 198.
- [11] D. Ferri, L. Forni, M.A.P. Dekkers, B.E. Nieuwenhuys, Appl. Catal. B 16 (1998) 339.

- [12] A. Ueda, T. Nakao, M. Azuma, T. Kobayashi, Catal. Today 45 (1998) 135
- [13] C.N. Costa, V.N. Stathapoulos, V.C. Belessi, A.M. Efstathiou, J. Catal. 197 (2001) 350.
- [14] M. Machida, S. Ikeda, D. Kuragi, T. Kijima, Appl. Catal. B 35 (2001) 107
- [15] R. Burch, M.D. Coleman, Appl. Catal. B 23 (1999) 115.
- [16] R. Burch, P.K. Loader, N.A. Cruise, Appl. Catal. A 147 (1996) 45.
- [17] M. Pirez-Engelmann, P. Granger, L. Leclercq, G. Leclercq, Top. Catal. 30–31 (2004) 59.
- [18] A. Barrera, M. Viniegra, P. Bosch, V.H. Lara, S. Fuentes, Appl. Catal. B 34 (2001) 97.
- [19] S. Kikuyama, I. Matsukuma, R. Hikuchi, K. Sasaki, K. Eguchi, Appl. Catal. A 5840 (2001) 1.
- [20] S. Hodjati, K. Vaezzadeh, C. Petit, V. Pitchon, A. Kienneman, Appl. Catal. B 26 (1996) 420.
- [21] E.M. Stuve, S.W. Jorgensen, R.J. Madix, Surf. Sci. 146 (1984) 179.
- [22] J.R. Creighton, J.M. White, Surf. Sci. 122 (1982) 648.
- [23] W. Hecker, A.T. Bell, J. Catal. 92 (1985) 247.